
Appendix CC

More Accurate Solutions of
the Eigenvalue Problem

We consider the finite well again using a more accurate 5-point formula for the derivatives. As before, our basic strategy
will be to use a finite-difference approximation of the second derivative in Eqs. (2.24) and (2.27) to convert these differential
equations into a set of linear equations, which can be easily solved with MATLAB.

A 5-POINT FINITE DIFFERENCE FORMULA

To get started, we first introduce dimensionless variables that give the position of the particle in nanometers and the energy
and potential energy in electron volts.

x = χ · nm, E = ε · eV, V0 = V0 · eV. (CC.1)

By substituting these expressions for x, E, and V0 into Eqs. (2.24) and (2.27) we obtain the following equations

− d2u

dχ2 = E0 εu, for − 5 ≤ χ ≤ 5, (CC.2)

and

− d2u

dχ2
+ V0E0u = ε E0u, for |χ | ≥ 5 , (CC.3)

where u(x) is the wave function and E0 is a dimensionless number given by the equation

E0 = 2m(nm)2eV

�2
. (CC.4)

For the finite well described in Section 2.3, the well extends from χ = −5 to χ = +5 and V0 = 0.3.
We introduce the uniform grid,

χi = (i− 1) ∗ δ with i = 0, 1, . . . , n+ 1,

where δ is the grid spacing. As we shall see, only the points, χ1, . . . ,χn will play a role in the actual computation with
χ0 = −δ and χn+1 = n ∗ δ serving as auxiliary points. The second derivative u′′(χ) may be approximated by the following
5-point finite difference formula

u′′(χ) = −u(χ + 2 ∗ δ) + 16 ∗ u(χ + δ) − 30 ∗ u(χ) + 16 ∗ u(χ − δ) − u(χ − 2 ∗ δ

12 ∗ δ2
.

The value of u(χ) corresponding to the grid point χi will again be denoted by ui. With this notation, the value of the second
derivative at the grid point χi is

u′′
i = −ui+2 + 16 ∗ ui+1 − 30 ∗ ui + 16 ∗ ui−1 − ui−2

12 ∗ δ2
. (CC.5)
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Special care must be taken at the end points to ensure that the boundary conditions are satisfied. For the even solutions, the
wave function is non-zero and has a zero derivative at the origin. According to the finite difference formula, the value of the
second derivative at the origin is

u′′
1 = −u3 + 16 ∗ u2 − 30 ∗ u1 + 16 ∗ u0 − u−1

12 ∗ δ2
,

and the value at the second grid point is

u′′
2 = −u4 + 16 ∗ u3 − 30 ∗ u2 + 16 ∗ u1 − u0

12 ∗ δ2
.

We note, however, that for an even function, u0 = u(−δ) = u(+δ) = u2 and u−1 = u(−2 ∗ δ) = (2 ∗ δ) = u3. The above
equations can thus be written as

u′′
1 = 2 ∗ (−u3 + 16 ∗ u2) − 30 ∗ u1

12 ∗ δ2
, (CC.6)

and the value at the second grid point is

u′′
2 = −u4 + 16 ∗ u3 − 31 ∗ u2 + 16 ∗ u1

12 ∗ δ2
. (CC.7)

The second derivatives at χn−1 and χn are given by the formulas

u′′
n−1 = −un+1 + 16 ∗ un − 30 ∗ un−1 + 16 ∗ un−2 − un−3

12 ∗ δ2

and

u′′
n = −un+2 + 16 ∗ un+1 − 30 ∗ un + 16 ∗ un−1 − un−2

12 ∗ δ2
.

However, even- and odd-functions are both zero at the last grid points, χn+1 = nδ and χn+2 = (n+ 1) ∗ δ, and both these
equations may be written as

u′′
n−1 = 16 ∗ un − 30 ∗ un−1 + 16 ∗ un−2 − un−3

12 ∗ δ2
(CC.8)

and

u′′
n = −30 ∗ un + 16 ∗ un−1 − un−2

12 ∗ δ2
. (CC.9)

Using Eqs. (CC.5)-(CC.9), the Schrödinger equations for a finite well can be transformed into a set of linear equations. We
note that Eq. (CC.3), which applies outside the well, has a second derivative and another term depending on the potential V0,
while Eq. (CC.2), which applies inside the well, has only a second derivative. If we chose a very coarse 5-point grid with
the points, χ = 0, 4, 8, 12, 16, the conditions that Eqs. (CC.2) and (CC.3) are satisfied at the grid points are

−u′′
1 = E0εu1,

−u′′
2 = E0εu2,

−u′′
3 + V0E0u3 = E0εu3,

−u′′
4 + V0E0u4 = E0εu4,

−u′′
5 + V0E0u5 = E0εu5.

We now use Eqs. (CC.5)-(CC.9) to evaluate the second derivatives in the above equations, and we multiply each of the
resulting equations by 12 ∗ δ2 to obtain

30 ∗ u1 −32 ∗ u2 2 ∗ u3 = 12 ∗ δ2E0εu1

−16 ∗ u1 +31 ∗ u2 −16 ∗ u3 +u4 = 12 ∗ δ2E0εu2

u1 −16 ∗ u2 (30 + 12 ∗ δ2V0E0)u3 −16 ∗ u4 u5 = 12 ∗ δ2E0εu3

u2 −16 ∗ u3 (30 + 12 ∗ δ2V0E0)u4 −16 ∗ u5 = 12 ∗ δ2E0εu4

u3 −16 ∗ u4 (30 + 12 ∗ δ2V0E0)u5 = 12 ∗ δ2E0εu5
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These last equations can be written in matrix form. We define the matrix A by the equation

A =

⎡
⎢⎢⎢⎢⎣

30 −32 +2 0 0
−16 31 −16 +1 0
+1 −16 (30 + 12 ∗ δ2V0E0) −16 +1
0 +1 −16 (30 + 12 ∗ δ2V0E0) −16
0 0 +1 −16 (30 + 12 ∗ δ2V0E0)

⎤
⎥⎥⎥⎥⎦

and the vector u by the equation

u =

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎥⎥⎦
.

With this notation, the above equations for u1, u2, u3, u4, and u5 can be written simply

Au = 12 ∗ δ2E0εu (CC.10)

We have thus converted the eigenvalue problem for the finite well into a matrix eigenvalue problem. MATLAB
Program CC.1 given below may be used to find the eigenvalues and eigenfunctions of the matrix A.
MATLAB Program CC.1
A MATLAB program for finding the eigenvalues and eigenvectors of an electron moving in a finite well.

xmax=20;
L=5;
n=5;
delta=xmax/n;
n1=fix(L/delta)+1;
n2=n-n1;
e0=1.759
v1=ones(n-1,1);
v2=ones(n-2,1)
d=[30*ones(n1,1);(30+3.6*e0*deltaˆ2)*ones(n2,1)];
A=-16*diag(v1,-1)-16*diag(v1,1)+diag(v2,-2)+diag(v2,2)+diag(d);
A(1,2)=-32;
A(1,3)=2;
A(2,2)=31;
A
[E V]=eig(A);
GroundState = V(1,1)/(12.0*e0*deltaˆ2)

As before, the first four lines ofMATLABProgramCC.1 define the length of the physical region (xmax), theχ coordinate
of the edge of the well (L), the number of grid points (n), and the step size (delta). The MATLAB function “fix” in the next
line of the program rounds the ratio “L/delta” to the integer toward zero. The integer n1, which is the number of grid points
within the well, is then obtained by adding the point at the origin. The integer n2 is the number of grid points outside the
well. After defining the constant E0 the program then defines vectors v1 and v2. The vector v1 is used to include the elements
just below and above the diagonal of the matrix, and v2 is used to include the elements twice removed from the diagonal
elements of the matrix A. While the A matrix has n diagonal elements, it has n− 1 elements just below and above the
diagonal and n− 2 elements twice removed from the diagonal. The vector d consists of the elements along the diagonal
of the A matrix with the semicolon separating the elements of the vector corresponding to points inside the well from the
elements corresponding to points outside the well. The function diag used to define the A matrix has a number of functions
in MATLAB. If the argument of diag is a matrix, diag gives the diagonal elements of the matrix. When diag has a single
argument that is a vector with n elements, the function diag returns an n× nmatrix with those elements along the diagonal.
Matrices with the element below or above the diagonal can be produced by giving an additional integer which gives the
position of the vector below or above the diagonal. Thus, diag(v1,-1) and diag(v1,1) return matrices with the elements of
v1 along the locations one step below and above the diagonal, while diag(v2,-2) and diag(v2, 2) returns a matrix with the
elements of v2 along the second locations below and above the diagonal, and diag(d) returns an n× n matrix with the
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elements d along the diagonal. The A matrix is the sum of these five matrices. One can readily confirm that MATLAB
Program CC.1 produces the same matrix as the matrix shown in the text.

This program produces the output

GroundState =

0.0207
0.1517
0.3253
0.3900
0.4594

With a five point grid (n = 5), the two lowest eigenvalues are 0.0207 eV and 0.1517 eV, while the lowest eigenvalues for
n = 20, are 0.290 eV and 0.2407 eV. The lowest eigenvalue thus approaches the very accurate eigenvalue 0.0325 eV given
in the third chapter.

Thus far, we have shown how differential equations can be converted into sets of linear equations or equivalently into
matrix equations. The process of converting continuous differential equations into sets of linear equations or equivalently
into equations withmatrices is called discretization. In addition to making finite difference approximations to the derivatives,
differential equations can be discretized using the spline collocation or the finite element methods. We shall now show how
to solve differential equations and eigenvalue problems using the spline collocation methods.

For solving the Schrödinger equation using spline collocation, we shall here use a continuous differentiable basis of
piecewise Hermite cubic splines. To define the spline functions for a single variable χ , we introduce the grid

χi = i ∗ δ, with i = 0, 1, . . . , n,

where δ is again the grid spacing. The points χi are called nodes.
The basis functions vi(χ) and si(χ) for 1 ≤ i ≤ N − 1 are defined by the equations

vi(χ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

δ3
(χ − χi−1)

2[δ + 2(χi − χ)], χi−1 ≤ χ ≤ χi

1

δ3
(χi+1 − χ)2[δ + 2(χ − χi)], χi ≤ χ ≤ χi+1

0, otherwise

(CC.11)

si(χ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

δ3
(χ − χi−1)

2(χ − xi), χi−1 ≤ χ ≤ χi

1

δ3
(χi+1 − χ)2(χ − xi), χi ≤ χ ≤ χi+1

0, otherwise,

(CC.12)

The spline functions vi(χ) and si(χ) together with the special functions at the ends of the entire region are shown in
Fig. CC.1.

The values of these functions and their first derivatives at the nodal points follow immediately from eqs. (CC.11) and
(CC.12)

vi(χj) = δij, v′i(χj) = 0, si(χj) = 0, s′i(χj) = δij
1

h
, (CC.13)

where δij is the Kronecker delta function. These conditions are sufficient to determine the polynomials within each interval.
An approximate solution of an ordinary differential equation can be expressed as a linear combination of Hermite splines

u(χ) =
N∑
i=0

[αivi(χ) + βisi(χ)], (CC.14)

For the Gauss quadrature points, ξi1 and ξi2, within the i-th interval, four functions of the basis, vi−1, si−1, vi and si, have
nonzero values. These functions are illustrated in Figure CC.2.

The Gauss points for cubic polynomials are given by the formulas

ξi1 = xi−1 + 3 − √
3

6
δ, ξi2 = xi−1 + 3 + √

3

6
δ (CC.15)
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FIGURE CC.1 These three graphs show and vi and si for 1 ≤ i ≤ N − 1 (bottom) together with the special functions v0, s0, vN , sN .

FIGURE CC.2 Four of the splines are nonzero at the Gauss points within the interval [xi−1, xi].

Using (CC.14), the solution can be evaluated at the Gauss points. We have

u(ξi1) = b11αi−1 + b12βi−1 + b13αi + b14βi, (CC.16)

u(ξi2) = b21αi−1 + b22βi−1 + b23αi + b24βi. (CC.17)

The coefficient matrix bij, which correspond to the values of the spline basis functions at the collocations points, can be
evaluated using Eqs. (CC.11) and (CC.12). Equations (CC.16) and (CC.17) can be written in matrix form as

[
u(ξi1)
u(ξi2)

]
=

[
b11 b12 b13 b14
b21 b22 b23 b24

]
⎡
⎢⎢⎣

αi−1
βi−1
αi
βi

⎤
⎥⎥⎦ . (CC.18)

Treating each of the subintervals in a similar manner, the vector uG consisting of the values of the approximate solution
at the Gauss points can be written as the product of a matrix times a vector

uG = Bu, (CC.19)

where

u = [α0, β0,α1, β1, . . . ,αN , βN]T, (CC.20)

uG = [u(ξ11), u(ξ12), u(ξ21), u(ξ22), . . . , u(ξN1), u(ξN2)]T (CC.21)
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and B is a rectangular matrix having 2N + 2 columns and 2N rows. B has the structure

B =

⎡
⎢⎢⎢⎢⎢⎣

B1
B2

. . .
BN−1

BN

⎤
⎥⎥⎥⎥⎥⎦
. (CC.22)

Two adjacent blocks Bi and Bi+1 overlap in two columns.
The first and second derivatives of the approximate solution can be represented bymatrices with the same block structure.

We express the vector u′
G consisting of the values of the first derivative of the solution at the Gauss points as

u′
G = Cu, (CC.23)

where u is given by Eq. (CC.20) and

u′
G = [u′(ξ11), u′(ξ12), u′(ξ21), u′(ξ22), . . . , u′(ξN1), u′(ξN2)]T. (CC.24)

The negative of the second derivative of the function at the Gauss points can be written as

−u′′
G = Au. (CC.25)

As for the matrix B, matrices C and A have N + 2 columns and 2N rows, and the Hamiltonian of the system will have
this property. The matrices may be converted into square matrices by adding a single row to the top and bottom of these
matrices. These additional rows may be chosen to impose the boundary conditions. In the case of homogeneous Dirichlet
or Neumann boundary conditions, the boundary conditions can also be imposed by removing from the matrices B, C, and
A the columns corresponding to the zero value of the functions or its derivatives. For the even solutions, the derivative of
the wave function at the center of the well is zero and the wave function will be zero at the edge of the physical region. The
boundary conditions can then be imposed by deleting the second column and the second to last column of the matrices. The
matrices then have the same number of rows and columns.

The collocation matrix, which represents the operators on the left-hand side of Eqs. (CC.2) and (CC.3), is defined
differently for points inside and outside the potential well. For points inside the well, the collocation matrix depends only
upon the A matrix representing the negative of the second derivative of the wave function

C1 = A.

Outside the well, the collocation matrix depends upon both the A and B matrices according to the equation

C2 = A + V0 ∗ E0B.
In the MATLAB program to be described shortly, the C1 and C2 matrices are brought together to form the collocation
matrix with the command

Cmat = [C1;C2]. (CC.26)

According to eq. (CC.19) a vector consisting of the values of the wave function at the collocation points is related to a
vectors with the spine coefficient by an equation of the form

v = Bmatu. (CC.27)

Using eqs(CC.26) and (CC.27), the eigenvalue equation for an electron in a finite well may be represented by the following
matrix equation

Cmatu = E0εBmatu. (CC.28)

This last equation with matrices on both the left- and right-hand sides defines a generalized eigenvalue problem.
To obtain a standard eigenvalue problem, we first recall that the boundary conditions may be imposed by deleting two

columns from the matrices. After removing the two appropriate columns, Bmat then has the same number of rows and
columns and may be inverted. We may then use eq. (CC.27) to write the generalized eigenvalue equation (CC.28) in the
form of the following standard eigenvalue equation

Lmatv = E0εv, (CC.29)
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where

Lmat = CmatB−1
mat. (CC.30)

The matrix eigenvalue equation may thus be written in two equivalent forms. Eq.(CC.28) is a generalized eigenvalue
equation, and eq. (CC.29) is a standard eigenvalue equation. MATLAB has routines that can be used to solve either of these
two kinds of equations. The more stable approach is to solve eq. (CC.28) rather than to solve eq. (CC.29). The collocation
matrix, Cmat, which appears in eq. (CC.28), is a banded matrix for which MATLAB has very efficient subroutines, while
the matrix, Lmat, is in general a dense matrix. The MATLAB Program CC.2 finds the lowest eigenvalues for a finite well
by solving eq. (CC.28).
MATLAB Program CC.2
A MATLAB program for finding the eigenvalues and eigenvectors for an electron moving in a finite well using the spline
collocation method.

xmax=20;
L=5;
n=4;
delta=xmax/n;
deltas=delta*delta;
n1=fix(L/delta);
n2=n-n1;
e0=1.759;
v0=0.3;

% Construct B matrix
p1=(9 -4*sqrt(3))/18;
p2=(9+4*sqrt(3))/18;
p3=(3-sqrt(3))/36;
p4=(3+sqrt(3))/36;

B=[p2 p4 p1 -p3; p1 p3 p2 -p4]

% Construct C matrix
p5=2*sqrt(3);

C=[1 -1/p5 -1 1/p5; 1 1/p5 -1 -1/p5]/delta

% Construct A matrix
p6=sqrt(3)-1;
p7=sqrt(3)+1;

A=[p5 p7 -p5 p6;-p5 -p6 p5 -p7]/deltas

% Construct Collocation matrix
C1=zeros(2*n1, 2*n+2);
for row=1:2:2*n1-1

C1(row:row+1, row:row+3)=A;
end
C2=zeros(2*n2,2*n+2);
for row=1:2:2*n2

C2(row:row+1,row+2*n1:row+2*n1+3)=A+v0*e0*B;
end
Colmat=[C1;C2];
Colmat(:,2)=[];
Colmat(:,2*n)=[];
% Construct B matrix
Bmat=zeros(2*n, 2*n+2);
for row=1:2:2*n-1
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Bmat(row:row+1, row:row+3)=B;
end
Bmat(:,2)=[];
Bmat(:,2*n)=[];
% Construct eigenvalue matrix
V =eig(Colmat,Bmat);
GroundState = sort(V)/e0

As before, the first four lines ofMATLABProgramCC.2 define the length of the physical region (xmax), theχ coordinate
of the edge of the well (L), the number of intervals (n), and the step size (delta). The MATLAB function “fix” in the next
line of the program rounds the ratio “L/delta” to the integer toward zero. The integer n1 is the number of intervals within
the well, and the integer n2 is the number of intervals outside the well. Each interval contains two collocation points. After
defining the constant E0, the program then defines the A, B, and C matrices, which are used to construct the collocation
matrix Cmat. MATLAB Program CC.2 produces the following output

GroundState =

0.0334
0.2547
0.3292
0.4069
0.5724
0.7212
0.9315
1.0941

With only four intervals, the program returns a lowest eigenvalue of 0.0334 eV. Since the potential well described in
Section 2.3 is 0.3 eV deep, the second eigenvalue 0.2547 eV also corresponds to a bound state. Program C.2 converges very
rapidly. For a grid with 20 intervals the program returns the lowest eigenvalues, 0.0342 and 0.2715 eV.

While MATLAB Program CC.2 gives the eigenvalues of an electron moving in a finite well, it does not give the
eigenvectors. To obtain the eigenvectors, one can replace the last two statements of the program with the statements

[E V] =eig(Colmat,Bmat);
GroundState = diag(V)/e0

The program then produces the output

GroundState =

1.0941
0.0334
0.9315
0.7212
0.5724
0.2547
0.4069
0.3292

We obtain the same eigenvalues in a different order. The lowest eigenvalue is the second eigenvalue produced, while the
next lowest eigenvalue is the sixth eigenvalue produced. To get the eigenvectors for the two lowest states, we first note that
the eigenvector v, which is the solution of the simple eigenvalue equation (CC.29), is related to the eigenvector u, which is
a solution of the general eigenvalue equation (CC.28) by Eq. (CC.27). One may thus get the wave function for the lowest
state by multiplying Bmat times the second column of the matrix E produced by the last MALAB program, and one may get
the wave function corresponding to the next lowest eigenvalue by multiplying Bmat times the sixth column of the matrix E.
This whole process can, of course, be made more automatic.


